PAGE
10

A Technical Overview of the

Windows NT Operating System

Author:
Seamus Keane

ID No:

98 23913

Date:

7 April 1999

Contents:

Section:
Description

Page

1

Introduction

2

2

Historical Review

2

3

The NT User Mode

4

4

The NT Kernel Mode

7

5

Processes and Threads

9

6

The NTFS File System

11

7

The Win32 API

12

8

Summary Conclusions

14

Reference List

15

1. Introduction:
This paper will provide a description of the Windows NT operating system. It will take a high level run through the main elements of the operating system and how the different components function. As well as describing NT there will be some comparison with the other main operating systems used today, mainly the Microsoft systems, DOS, 16-bit Windows and Windows 95 and 98, but there will be some information on UNIX and OS/2 as well. The main areas of the NT operating system which will be covered include a description of it's origins, a comparison of the two modes of operation, how scheduling is implemented, the file system, and the application programming interface used in NT.

Windows NT is a 32-bit pre-emptive multitasking operating system which was developed by Microsoft in the late 1980's and early 1990s. It has been designed for use in the current generation of 32 bit microprocessors and was the first operating system from Microsoft which was not solely intended for Intel based hardware. It can support multiple applications running concurrently on one microprocessor through a pre-emption system where each application is granted a timeslice on the CPU to execute.

Within NT this is achieved by treating each application as a process and any process can have several threads which execute together. Execution of application threads and the operating system threads is split between two modes of operation in NT, the User mode and the Kernel mode. These two differ in the privileges they possess and how they interact with the other applications and the computer hardware. The different executing elements of the operating system are split between these two modes with the lower lever functions in the kernel.

In developing Windows NT Microsoft also developed some new support technologies for the operating system. The first is NT's file system which uses the New Technology File System or NTFS. This is the main system for NT though older Microsoft systems like FAT16 are still supported. The other major development was Microsoft's own 32-bit API for applications the Win32 API. This API again was designed from new with NT in mind and has become the standard for Microsoft applications.

2. Historical Review:
Windows NT grew out of an collaboration between IBM and Microsoft in the late 1980's. At that time Microsoft's 16-bit MS-DOS operating system was the main one in use on PCs but the first 32-bit processors, Intel's 386s were being introduced. It was felt there was a need a new operating system to fully utilise the capabilities of the new processors. Together IBM and Microsoft developed the first version of OS/2, which was to be an enterprise level 32-bit replacement for DOS on Intel processor platforms. At the same time Microsoft were working on another 32-bit high level operating system which was to be OS/2 New Technology or NT. And like OS/2 was targeted at high end workstations, servers and corporate networks.

Early in the 1990's Microsoft launched the latest version of their first GUI based operating system Windows 3.0. This was quite successful and gained the company a large user base. Microsoft and IBM disagreed over how they should continue to develop the two operating systems, Windows and OS/2. IBM maintained Windows should be a stepping stone to the superior OS/2 while Microsoft wanted Windows to compete with OS/2. A split occurred between the two companies, and IBM continued to develop OS/2 while MS launched their new operating system as Windows NT in 1993.

Compared with MS-DOS and 16-bit Windows 3.x. Windows NT is a much more capable system. DOS is a single task, terminal interface, 16-bit operating system. Windows 3.x advanced on this with a GUI and some basic multitasking capabilities, but essentially it runs on top of DOS. NT though is a 32-bit operating system, with a GUI interface and importantly has full pre-emptive multitasking capabilities. The multitasking in 16-bit Windows is limited as it depends on the applications being ‘well behaved’ so they surrender the CPU regularly to other applications. A buggy program could enter a loop and not release the CPU leaving you with no way to recover the system.

Microsoft’s newer 32-bit operating systems Windows 95 and Windows 98 are viewed by the company as stepping stones towards NT. They are much improved on DOS and 16-bit Windows and are built around the Win32 API, but still are not as capable as NT. However having been developed since NT they do have some features which are not yet in NT. Windows 95 is almost a full 32-bit operating system. It uses a version of the Win32 API, but some of the NT functions are not implemented and others are only implemented with 16-bit capability. However any program written for NT should run on Windows 95. Windows 95 also lacks the security features and reliability of NT, it uses the 16-bit file system FAT16 and still uses a version of DOS for many of its operations. Windows 95 did introduce a number of features which have been built into NT such as an improved GUI. It has better hardware features such as Plug & Play which has yet to be built into NT. Windows 98 offered some incremental improvements, the main ones being the elimination of DOS, an improved file system, FAT32 and improved multimedia features. FAT32 though is not as capable as the NT file system NTFS.

Overall the Windows 9x versions have better hardware and multimedia features, run faster and with less memory on a single processor making them the choice for a desktop/home user. But NT offers greater stability, security, networking and multitasking capabilities, and it can run on up to 4 processors. This makes it more suitable for enterprise/server level use.

NT was initially designed with the high end workstations, servers and the corporate networks market in mind, and so was developed with a wide range of capabilities. At the start of the 1990's there was a range of different hardware, software and networking designs competing to be the market leader. By building in as much functionality as possible NT's designers wished to position the operating system to do well whichever technology became the winner. It was to be backward compatible with DOS and 16-bit Windows. And it was designed to be able to run software for OS/2 and UNIX systems. Microsoft saw as well that the enterprise level customers were using 32-bit APIs for their programming so they decided to develop their own 32-bit API which became the Win32 API. This was designed as Windows NT's primary and default API though the other major API's of the time would be supported to some extent.

Another requirement for the new operating system was to make it platform independent. Earlier Microsoft operating systems were designed for Intel’s x86 family. But many of the high end systems used by the customers NT was aimed at, ran on non-Intel hardware. This led Microsoft to develop as much of the operating system as possible in C to make it portable, and processor specific code was to be limited to as few parts of the operating system as possible. In the same way NT was designed with support for all the major networking protocols in use at the time.

Having decided who they were targeting Microsoft developed an extensive list of capabilities for the new operating system. One of the biggest differences is that it would be a full pre-emptive multitasking operating system. It would run several applications simultaneously and the operating system itself would be responsible for scheduling and controlling which applications got processor time, when they got the time and for how long. Being a 32-bit operating system it would have access to up to 4GB of memory, considerably more than previous Microsoft products. Improved reliability for applications would be given by providing protected memory spaces. This would restrict the memory any particular program could access to it’s own allocated memory space and would limit how a ‘disruptive’ program might adversely interact with other programs or the operating system itself. Another improvement introduced into NT was a strong security model to control access to data and applications and to log events on the operating system.

NT is currently on release 5 and the next release Windows 2000 is due next year. The operating system is available in two versions for different types of end user. There is a workstation version targeted at desktop systems and a server version. Fundamentally the two are the same though there are scheduling differences which will be described later and the server version can run on systems with up to 4 microprocessors, where as the workstation version will only support two processors. Other differences are that the server version gives the administrator more control over what the OS can do e.g. increasing how much memory goes to user mode

3. The NT User Mode:
Within the NT operating system the different functions and elements run under the operating system can be split into two levels, the User Mode and the Kernel Mode. This distinction has important implications for how applications run under NT, how they work with memory, system hardware and with other applications. The split can be seen in figure 3.1 on the next page.. Execution of applications is typically in user mode, and NT services and functions execute in kernel or user mode depending on their function. In this section I shall describe the user mode, it's features and the characteristics which distinguish it from the kernel mode.

The key difference between the user and kernel modes comes from the privileges accorded to applications running in each area. The user mode is the less privileged with restrictions on how applications can access memory, hardware and CPU time. The user level is where the applications and the operating system environment subsystems operate. Programs are run in a sandbox which is created for the program by the executive in the kernel and the program's operating system environment subsystem.

[image: image1.wmf]Priority

31

16

15

1

0

Realtime

Dynamic

Idle

A

F

G

B

D

C

E

Increasing Priority

Figure 3.1 Windows NT Architecture

Normally in NT the first 2GB of memory is allocated for the user mode and the program which is currently running. The remaining 2GB is allocated to the kernel. This kernel memory is protected and user mode programs cannot access it. Similarly they cannot access any memory allocated to other user mode programs. This restricting of memory is a feature of NT which gives it greater stability by preventing one application from corrupting memory allocated to another. As well as this user mode applications cannot directly access the computer hardware. Instead they go through the arrangement shown in Figure 3.2

The program in user mode will use an Application Programming Interface (API) to communicate with an Operating System Environment Subsystem. The environment subsystem used will depend on the API being used. The user environment subsystem communicates to the kernel level with NT's Native API, a lower level API which is used with the Executive, and the executive passes directions to the Hardware Abstraction Layer (HAL), and from there they go to the computer hardware. The Executive and HAL will be discussed in the next section. Within the User mode the important thing is how the Environment Subsystems work.

[image: image2.wmf]User Mode

Program

User Mode

Environment

Subsystem

Computer

Hardware

HAL

Executive

Kernel

Mode

Any application relies on an API to communicate with some operating system. At compile time it is bound to an API which provides it with a way of working with memory, files and other hardware through the operating system. Each program uses their own API, so for a Windows NT program the normal API is the Win32 API. In NT when the application is running it acts as a client and makes requests of the NT environment subsystem which acts as a server to handle these requests. The environment subsystem used will be the one that corresponds to the API the application is using. The native subsystem for NT is the Win32 subsystem which is used by programs using the Win32 API. POSIX and OS/2 applications have their own subsystems but they also use the functions in the main Win32 subsystem. Both of these are limited. Only OS/2 programs up to version 1 and without a GUI will work, and many UNIX programs will not work under NT.

Calls using the DOS and 16-bit Windows APIs are implemented indirectly using the Win32 subsystem. DOS is supported by using Virtual DOS Machines (VDM) and for 16-bit Windows applications Windows on Windows (WoW) is used, which also uses a VDM. The VDM is a Win32 application which simulates an Intel 486 running MS-DOS. Each application runs in it's own VDM and each VDM runs in it's own address space, to protect applications from each other and protect everything else from the VDMs.

The Win32 subsystem executes applications as Processes. Usually there will be one process per application. In NT a process can also have multiple threads executing together, though most programs will have only one thread. How the threads are run is decided by the scheduler and this will be covered later in Section 5 on Processes and Threads.

For the user mode subsystems to work they rely on a set of services provided by the kernel mode for the tasks they are prevented from performing in user mode. These services which are invoked in the kernel mode are known as NT's Native API. The native API is similar to but differs from the Win32 API. There are around 250 functions in the native API with similar names to those in the Win32 API, but they work within the kernel. These native API services are known as system services. The system services allow user mode processes access the kernel mode functions. They work on one or more of the functions in NT's executive, which are described in the next section. The system services are intended for the environment subsystems to use but nothing stops their direct use other than they are undocumented and the same benefits can be gained from the OS environments. More information is given on the system services in Section 7 on the Win32 API.

The call between the user mode and the kernel Mode is implemented as a system call gateway. The flow of information through this gateway is precisely controlled by NT. So even if a user level program attempts to access a hardware device for example, the operating system will prevent it from doing so.

4. The NT Kernel Mode:
As shown in Figure 3.1 the kernel is made up of three main components, the Executive, the Microkernel (usually referred to as the NT kernel), and the Hardware Abstraction Layer (HAL). Between them the three carry out most of the functions of the operating system and they are the only parts of the operating system with direct access to the hardware. The kernel mode is highly privileged compared to the user mode. Kernel mode processes have full access to all memory, including memory allocated to user mode programs and memory used by unrelated programs. So a device driver in kernel mode could write to the memory of a word processor and make any changes it wished.

The executive and kernel provide the system services which are used by the operating system environments. The executive depends on the kernel for any processor specific functions. Beneath the micro-kernel is the HAL, which allows the other kernel level subsystems to interface with the processor. This means the executive is hardware independent whereas the kernel and HAL have to be rewritten between processors. Microsoft designed NT in this way so to move it to a new hardware platform most of the code (written in C) can be recompiled and only the HAL and microkernel would have to be re-written completely.

In the rest of this section I will go into the main functions of each of the three components of the kernel.

4.1 - Executive

The executive is the main part of the kernel layer and performs most of the traditional operating system functions. It is made up of a group of components, the main ones being: The I/O Manager, Object Manager, Security Reference Monitor, Process Manager, Local Procedure Call Facility and the Virtual Memory Manager.

The Object Manager is used to define and manage objects which represent resources within the computer system. An example is where the Process Manager uses the object manager to define an object which tracks all the processes which are running. Part of the object management duties include identifying the objects corresponding to resources and tracking how many systems are accessing a resource. When no system is accessing a resource then the object representing the resource can be deleted. As most of the native system services are resource related they almost always invoke the object manager functions. The object manager can also call other executive subsystems when necessary.

The Process Manager works with the kernel, which carries out scheduling, to define the process and thread objects. It adds the process identifier (PID) to each of the kernel's process objects.

The Security Reference Monitor (SRM) is closely associated with the object manager and is responsible for the strong security capabilities in Windows NT. The object manager calls the SRM to provide a security check whenever an application wishes to open an object or perform an operation on an object like a read or write. The SRM uses the NT security procedures to validate whether the operation can go ahead and whether it should be logged. The SRM uses a security model based on Security Identifiers (SID) and Discretionary Access Control Lists (DACL).

Every process has an access token with a SID identifying the user who owns the process and the SIDs of the groups the user belongs to. In a security check the SID describes the user trying to complete the action on the object. When a process wishes to access an object the SRM takes the desired access with the users SID and goes to a DACL. The DACL specify the actions that particular SIDs can perform on a particular object. Actions are listed together with an allow or deny type. It is this information which is referenced when a security check is carried out. If there is a match between the SID and the access type then the process can proceed. As well as this there are System Access Control Lists (SACL) which tell the system to log specific actions when particular users perform them (e.g. a remote user logging onto the network).

The Virtual Memory Manager creates and manages memory maps for processes and controls physical memory allocation. As described above NT can address up to 4GB of memory and this is split between user and kernel mode memory with the first 2GB going to user mode applications. The memory is managed in pages of 4kB in Intel x86 systems, different page sizes are used in other systems. The VMM allows the total memory required by an application to exceed the memory available in the computer. This is done by using physical memory such as the hard disk, and memory from a paging file when it is required by an application. The VMM allows programs to share individual files and data. When any one then wishes to write to the shared data it gets its own individual copy. The VMM also tunes the memory available to programs by allocating extra memory where it is needed and ensuring all executing programs have enough to keep running.

The I/O Manager integrates all the add-on devices with NT. Drivers are dynamically loaded components designed to provide hardware and network support. They are designed to run within the kernel and use the extra functionality that this can provide. The drivers are usually supplied by the manufacturer of the hardware and control the specific item by translating commands from NT and applications to the device and then manipulating the device to carry them out. NT uses asynchronous, packet based I/O for hardware communication. Interrupt Request Packets (IRP) are used to describes everything the device driver needs to know to handle an applications requests. It includes the location of the buffer to read to, a pointer to the open file object, offsets to where the data resides and the amount of data the program has to read.

The Local Procedure Call Facility optimises communications for applications, including the operating system environments. Communication between functions and objects in the operating system is done via messages which are passed in different ways depending on their size. Small messages of less than 256 bytes are copied directly while larger ones are transferred using shared memory. This code has been highly optimised to ensure efficiency as a slow call method would badly affect performance. From NT 3.51 to NT 4.0 Microsoft moved the GDI (graphics device interface) out of the user mode and into the kernel to reduce to number of calls using the LPC. This led to much improved responsiveness, especially for graphics operations but at the cost of some stability.

4.2 - The Kernel
The kernel contains the NT thread scheduler called the dispatcher. The dispatcher is a pre-emptive scheduler, time is divided into slices called quantums and each thread can operate for a quantum and then is pre-empted to allow another thread to run. This is discussed in detail in Section 5 on threads and Processes. The kernel operates more closely with hardware than the executive, and hence contains processor specific code. If the computer has multiple CPUs the kernel synchronises activity between them to optimise performance. Kernel code does not run in threads, and so is the only part of the operating system which is not pre emptable or pageable. The kernel also implements synchronisation and mutual exclusion. It has it's own object types though it wraps them with executive objects so applications can access them from user mode via the native API.

4.3 - Hardware Abstraction Layer
The HAL provides NT's interface to the CPU. To make NT portable as much of the processor specific code as possible was restricted to here. So the HAL together with the kernel are dynamically replaceable between processors families. The HAL exports a common processor model which hides the differences in processor types. This common processor used by device drivers.

5. Processes and Threads:
NT is a pre-emptive multithreading operating system. It runs multiple threads at once and can pre-empt or stop any particular thread from executing. The details of how this is achieved is covered in this section.

NT views applications as processes which have to be executed. A process will consist of a virtual address space, executable instructions and a set of resources. Typically an application will consist of only one process and each process will consist of one or more threads which are the parts of an application that execute. Usually there is one thread per process though applications can have more. Multiple threads allow a program to have several parts operating at once. Deciding how to execute the threads and in what order is the job of the operating system scheduler. In NT the scheduler is called the dispatcher and it is based in the kernel. The dispatcher must allow several threads to appear to run simultaneously by allocating each a time slot (a time quantum) to run on the CPU. No distinction is made between threads from differing processes instead the choice of which thread to run is decided based on priority levels.

NT has 32 priority levels which run in increasing priority from 0 up to 31. These can be split into three groups as follows. Priority 0 is for background tasks which only run when there is nothing else to run. Priorities 1 - 15 are variable priority and are the typical ones used by program threads. These are referred to as Dynamic priorities. Priorities from 16 - 31 are reserved for time critical priorities and can only be accessed by kernel mode programs and the system administrator. These are called Realtime Priorities. All these are shown in Figure 5.1.

[image: image3.wmf]Login

Security

Subsystem

Win-16

Win-32

MS-DOS

Win 32

Subsystem

OS/2

OS/2

Subsystem

POSIX

POSIX

Subsystem

User Level

Applications/

Processes

Windows NT Executive Services

Virtual

Memory

Manager

Security

Reference

Monitor

Process

Manager

Local

Procedure

Call

Facility

Object

Manager

I/O Manager

Cache Mgr

File System

N’work Drv.s

Device Drv.s

Kernel Level

Microkernel (NT Kernel)

MACHINE HARDWARE

Hardware Abstraction Layer

There are different ways to set priorities to a thread using system services or the Win32 API. The latter is a more indirect method. It uses 4 set priority levels for processes and then their respective threads can have a relative priority level which allows them +/-2 on the process priority level.

The job of the dispatcher is to find the program with highest priority and run it first. Where there is more than one thread with the same priority then the CPU time is split based on the quantum units. The time quantums are of differing length depending on CPU family and version of NT. The workstation version uses smaller time quantums than server as a workstation user typically will be switching between applications, whereas a server is providing services and data to a network.

The scheduling decisions made by the dispatcher occur whenever one of the following happen:

· A thread's quantum expires

· A thread waits for an event to occur, i.e. becomes blocked

· A thread becomes ready to execute, i.e. unblocks or new thread appears

The dispatcher uses two functions, FindReadyThread and ReadyThread, to select the thread to run on the CPU. When a thread completes it's quantum then FindReadyThread is called. It locates the highest priority thread that is ready to execute. A list of ready to execute threads is kept in the Dispatcher Ready List. This contains an entry for each priority level and a queue of threads at that priority level. It picks the front thread from the highest priority non-empty queue. So in the example shown in Figure 5.1 the first process selected would be process A. When A is complete then the next highest priority processes are G, F and B. The one at the head of the queue is B so it will execute next. At the end of its time quantum it will be pre-empted in favour of F and B goes to the back of the queue and so on. The ReadyThread function is used when a new thread or a blocked thread becomes ready to execute. It checks if the thread has a higher priority than the one currently running. If so it then pre-empts the executing thread and puts it at the head of the dispatcher list. Otherwise the new thread is be sent to the dispatcher list.

In some situations NT can boost a threads priority such as when an event occurs which a blocked thread was waiting for. These boosts are limited and decay gradually as the thread gets time on the CPU. In NT workstation the foreground application also gets a boost by having its quantum time extended by a factor of up to three. NT also includes a mechanism to ensure a low priority process is not completely kept out of the CPU. An algorithm runs about once a second and any thread which hasn't run for about 3 seconds gets a temporary anti-starvation boost. Once it has run it drops back to it's original priority and time quantum length.

The difference between user mode and kernel mode scheduling is in the priorities threads have. User mode threads are limited to the dynamic range of 1 to 15. Even with boosting they cannot exceed 15. Kernel threads always are real-time so have a minimum priority of 16 and they are fixed and cannot change with boosting. The result of this is that kernel mode threads will always have higher priority than user mode and will execute first.

6. The NTFS File System:
The file system for NT, NTFS was designed in parallel with NT and was a completely new system from the ground up. Microsoft intended it to overcome the limitations of existing file systems, DOS's FAT16 and OS/2's HPFS.

From the start NTFS was designed as a 32-bit file system which made it more scaleable. A key parameter for a file system is how it addresses a hard disk. FAT uses a 16 bit entry to address clusters on the disk. For a modern Giga-Byte size hard disks this means the clusters, which are the minimum size storage unit on the disk, have to be quite large in size. On a 4GB disk the clusters will be 64k. This leads to wasted space on the disk when smaller files are used. NT though has 32-bit entries so it can allow much smaller (less than 10k) cluster sizes even with much larger hard disk sizes.

NT uses a different character set to FAT. Instead of the 8-bit ASCII set NTFS uses 16-bit Unicode which allows a much greater range of character types. This is particularly important for international users who wish to name files in their native languages. Microsoft also built a security system into NTFS, something which is omitted from FAT and HPFS. The model used is the same as in the operating system and uses Discretionary Access Control Lists (DACL) and System Access Control Lists (SACL). These control who can perform particular operations on a file and determine what file actions are logged when they occur. And there is improved fault tolerance over FAT by logging transactions. In the event of a system crash the log can be examined to see where data might have been corrupted.

The central File for the NTFS is the Master File Table (MFT) which is analogous to the FAT in the FAT system. It is responsible for mapping all the files and directories on the drive. The MFT is split into discrete units called records which typically are 1kB in size. These records contain each file and directory's characteristics such as name, security settings, and attributes like whether it is read only etc.

The MFT itself is stored as a file on the disk to give it the capability to grow as the number of files on the drive changes. As the MFT has to be accessed each time a file is read MFT access performance is important for the overall access time of any file. A problem can occur if as the MFT grows it becomes fragmented and several reads are needed to locate the entry for a directory or file. To avoid this NTFS reserves a number of sectors around the MFT for it's use, and other files are prevented from accessing these clusters. This allows the MFT more room to grow before it will become fragmented. But if space is in short supply outside this area then NTFS may allow files to write to these reserved clusters. Then the MFT may become fragmented and performance may be hit. The risk of this occurring is higher on disks which are near capacity.

The first entries in the MFT are the metadata files. These are 11 files created when the disk is initialised and they are associated with disk management. The MFT is itself a metadata file and is the first file on the drive with the name $MFT. Some of the other ones include $BITMAP. This is a bit map of all the clusters on the disk and is an array of bits which where each bit corresponds to a cluster. It is used to track which clusters are free and which have data. When data is written to the disk this bitmap is checked to see where space exists and is updated. $BADCLUS tracks which clusters are bad and should not be written to. The $MFTMRR is a backup for the MFT. This file is located in the middle of the disk and contains copies of the first 16 entries in the MFT. In the case that the start of the disk becomes corrupted or damaged then NTFS can refer to this duplicate instead. This is one of the loss prevention measures built into NTFS.

The MFT records consist of a small header with basic information and then one or more attributes to store the file or directory information. Altogether NTFS uses 14 different attributes. To improve performance in looking up this data, where possible all of it is held in the MFT record and is referred to as being resident. Otherwise it is non-resident and is stored in clusters elsewhere on the disk. At a minimum name and security information is stored as resident data. The header will also have a pointer to the start of the record and a pointer to the first free byte in the record.

A directory is represented as an index attribute which is used to collate file names. Entries in the index contain the name of the file and a copy of the standard information on that file like it's time stamp. This method gives increased performance in browsing directories as NTFS doesn't have to read the MFT to get the information. To further aid this the directory information is pre-sorted in a tree structure, which allows lists to be assembled faster.

One of the other major features of NTFS is it's data logging. As files and directories are changed NTFS writes records to a metadata log file $LOGFILE. In the event of a crash the chkdsk utility uses the log file to identify areas where data loss may have occurred or where clusters have been lost. Information in the log file is stored as redo and undo. This identifies whether an incomplete operation should be re-attempted or the changes should be abandoned to repair the data. The log file can become several MB in size and has to be periodically reset by NTFS.

7. The WIN32 API:
The Win32 API was developed by Microsoft as their own 32-bit API to compete with the POSIX and OS/2 APIs and has proved to be extremely successful. Win32 provides a set of functions, messages and structures to give applications access to the features of the operating system in a standard and consistent fashion. The Win32 API can be split into five general functional categories.

· Windows Management

· GDI - Graphics Device Interface

· System Services

· Multimedia

· Remote Procedure Calls

The Windows Management set of functions allow applications to use the standard Windows graphic user interface features. Usually there is one window per application and this can be used for display output and user input. The API defines window classes and procedures to be used by the applications and these give the appearance and behaviour of the windows. Input from the mouse and keyboard is passed as messages by message functions to the correct application in the window and to the appropriate window procedure. The functions also provided for dialog boxes, scrolling text, entering text and all the other features used in the Windows GUI.

The functions also generate the output for the windows. This is done using the GDI functions to provide the instructions to the display hardware. Some of the things involved are: applications shouldn't take all the screen and when a window is resized the API will request the application to paint the new window or window position.

The Graphics Device Interface (GDI) provides functions and related structures to allow applications to generate graphical output for displays and devices like printers. The GDI functions allow lines, curves, bitmaps, text etc to be drawn and be passed to hardware devices. Applications direct output to a device by creating a 'context' for that device. A handle for the device is returned by the GDI. Handles are used by the application to identify the device and get information on it and it's capabilities. Applications use attribute functions to set selections and operating modes for the selected device. Operating modes includes things like brush types, background colours etc.

The System Services were mentioned before but additional information on them is given here. The system services are the set of functions which give applications access to the resources of a computer, and the features of the underlying operating system, like memory, files systems and processes. An application uses the system services to manage and monitor the resources it needs to complete it's task. They support file I/O functions and provide methods for applications to share resources with other applications using Dynamic Link Libraries (DLLs). Useful procedures are put in a DLL and applications can access them with DLL functions. System information functions allow applications get information about the computer such as what input devices are present and what size the screen is.

The range of Multimedia Functions give applications access to audio and video and provide services for file I/O, media control, joysticks and timers. The different types of multimedia functions include audio functions to play and record audio data. This is done with a variety of formats including waveform, MIDI, etc. The audio functions have the capability to use compression and decompression and sound mixing. Video functions are used to capture video, compress the clips and control payback. Playback can be done using the Media Control Interface (MCI) which is controlled with the video functions. There also are a range of file I/O functions which are used to store and retrieve the different types of multimedia files.

The Remote Procedure Call (RPC) functions allow applications to carry out distributed computing and access resources on other computers across a network. With the RPCs you can create distributed applications which consist of a client that presents data to the user and a server which collates data and carries out most of the computing tasks for the client. The distributed application makes procedure calls to be executed on another computer. To the application they appear the same as a local procedure call. But they invoke procedures which call the RPC library which executes the calls in the remote address space on another machine across the network. The RPC handles all the necessary steps to execute the calls so applications need little or no network specific code.

As well as these five general function categories there are a series of Extension Libraries. These additional libraries provide application services and capabilities beyond the basic services of the Win32 API. Included are commonly used services such as common controls, common dialog boxes, data decompression and dynamic data exchange DDE management.

8. Summary Conclusions:
In this paper I have covered the basic details the Windows NT operating system. The system was developed in the late 1980's by Microsoft to be a highly capable 32-bit operating system with pre-emptive multitasking for enterprise level customers. Operation of the different elements is split between User and Kernel level mode with a strong distinction in privileges between the two. Kernel mode applications, mainly operating system functions and device drivers have greater access to the memory which is strongly protected, and hardware. Applications execute as processes and any process can have several threads. Scheduling of threads is carried out within the kernel mode by the microkernel. NT also has it's own file system the NTFS which provides additional capabilities over the other Microsoft file systems FAT16 and FAT32. The operating system also has it’s own default 32-bit API, Win32. This was developed for NT and gives applications access to all the advanced functions built into NT like increased security and fault tolerance.

At the time it was developed NT was a big step up from Windows 3 and MS-DOS as can be seen from it's $100m development price. It provided such a higher level of functionality and so many more features that it is only now coming into widespread use as a desktop system despite the rapid increase in hardware capability. Though in part this has been because of the slower than expected take up of 32-bit operating systems

In its original target market, servers and corporate networks, it has done much better and is the standard in many areas. It still faces strong opposition from UNIX and its versions which have the advantage in terms of scalability and reliability but NT has the advantage of being easier to use. The same features it was designed with nearly 10 years ago are the reasons why it still is a good choice today, it is fairly reliable, it's backward compatible with most other MS products. NT's strong networking and security features are even more important today than when it was developed. And it has a good file system which has plenty of room to grow.

Overall NT is well supported by Microsoft and each new release adds further capability to the operating system. So can be guaranteed that NT will continue to be around for another while.

Reference List:
[1] Linthieum, David. "4.0 Isn't for Everyone". Byte, July 1996

[2] Russinovich, M. "Inside NTFS, NT's Native File System…"

http://www.winntmag.com/Magazine/Article.cfm?ArticleID=3455

[3] Russinovich, M. "Windows NT Architecture, Part 1"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=2984

[4] Russinovich, M. "Windows NT Architecture, Part 2"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=3025

[5] Russinovich, M. "Inside the Windows NT Schedule, Part 1"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=302

[6] Russinovich, M. "Inside the Blue Screen"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=301

[7] Grossman, A "Windows NT Architecture"

http://www.globetrotting.com/windowsnt/ntarchitecture.htm

[8] Anderson, C. "Foreground Application Handling in NT 4.0"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=89

[9] Microsoft NT Site "Introduction to the Win32 API"

http://www.microsoft.com/win32dev/apiext/intro32.htm

[10] Rash, W. "Windows 95 vs Windows NT Workstation"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=2257

[11] Chau, J. "The Case for Windows 98"

http://www.winntmag.com/Magazine/Artice.cfm?ArticleID=3985

[12] Seltzer, L. "NT 5.0 Preview"

http://www.zdnet.com/reviews/alltopicguides/reviews/0,4161,360408,00.html

�

 Figure 5.1 Thread Priorities

�

Figure 3.2 Application to Hardware Path

10

